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The pathway from gene activation in the nucleus to mRNA translation and decay at specific loca-
tions in the cytoplasm is both streamlined and highly interconnected. This review discusses how
pre-mRNA processing, including 50 cap addition, splicing, and polyadenylation, contributes to
both the efficiency and fidelity of gene expression. The connections of pre-mRNA processing to
upstream events in transcription and downstream events, including translation and mRNA decay,
are elaborate, extensive, and remarkably interwoven.
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promoters are permanently engaged with Pol II initiation

complexes (Guenther et al., 2007; Muse et al., 2007) and may

generate 50 proximal abortive transcripts (Core and Lis, 2008;

Kapranov et al., 2007). Indeed, recent studies demonstrate

that short transcripts are generated in both the sense and anti-

sense directions from these pre-engaged polymerases (summa-

rized by Buratowski, 2008). The types of genes that possess

pre-engaged Pol II are particularly genes regulated at specific

development stages or inducible genes that need to rapidly

respond to new extracellular situations. By having Pol II already

plugged into the gene promoter, the complex process of uncov-

ering the gene from repressive chromatin structure and recruit-

ing the Pol II initiation complex from its component parts is

bypassed. Exactly what the molecular trigger is that switches

Pol II from abortive initiation into functional elongation mode is

still largely unknown (Figure 1). However, it has become evident

that pre-mRNA processing plays a critical role (Manley, 2002;

Orphanides and Reinberg, 2002; Sims et al., 2007).

The first RNA processing event to occur on the nascent tran-

script is 50 end capping. Three enzymatic activities, a triphospha-

tase, a guanyl transferase, and a methyl transferase, all act to

convert the pppA 50 terminus of the primary transcript to

7meGpppA (Shuman, 2001). The first two activities are present

on a single polypeptide in mammals but reside on separate

proteins, Ceg1 and Cet1, in yeast. All eukaryotes possess

a separate methyltransferase. Ceg1 and Cet1 are recruited to

the Pol II initiation complex once the CTD has become activated

by Ser5P formation through the action of TFIIH-associated cyclin

dependent kinase, Cdk7 (also known as Kin28 in S. cerevisiae;

Schroeder et al., 2000). Ceg1 directly associates with CTD

Ser5P, allowing it to act on nascent transcripts as soon as they

emerge from the elongating Pol II. Capping may well be a key

component of the switch that pushes Pol II from abortive early

elongation into fully processive elongation across the body of

the gene. Other components of this switch involve both negative

and positive elongation factors that may themselves be regu-

lated by phosphorylation dictated by cell signaling cascades
In the 50 years since Crick’s proposition of the central dogma of

gene expression, there has been an explosion in our under-

standing of the steps involved in the flow of information from

DNA to RNA to protein. Whereas many early studies focused

on elucidating the machinery and mechanisms required for

each individual step in the process, a conceptual transformation

in the last decade came with the realization that gene activation in

the nucleus and later events in the cytoplasm, such as translation

and decay, are seamlessly integrated. In this review, we focus on

how pre-mRNA processing regulates both transcription in the

nucleus and the subsequent fate of an mRNA in the cytoplasm.

Nuclear Events
Before beginning this account, it is necessary to provide a brief

reminder of the critical impact of structural studies on RNA poly-

merase II (Pol II) for our understanding of this gene expression

‘‘superhighway.’’ Pol II has an overall globular structure with an

enlarged central active site wherein the DNA template is forced

apart as a single-stranded bubble (Cramer, 2004). Channels

into this active site allow nucleotide access and RNA exit. Below

the RNA exit channel lies a relatively unstructured protein

domain, the carboxyl terminus of the largest Pol II subunit (Mein-

hart et al., 2005). This carboxyl terminal domain (CTD) has a

simple heptad repeat structure, 26 repeats in Saccharomyces

cerevisiae (henceforth referred to as yeast), 52 in mammals,

and each repeat bears three serine residues that undergo revers-

ible phosphorylation during the transcription cycle (Egloff and

Murphy, 2008). Serine 5 phosphorylation (Ser5P) along the CTD

repeats is a hallmark of early transcription elongation, whereas

serine 2 phosphorylation (Ser2P) is associated with later-stage

elongation (Komarnitsky et al., 2000). Reference will be made

throughout our review to the key roles played by this structure.

Pol II: Poised for Action
A surprising discovery has emerged from genomic array analysis

in both single-cell eukaryotes such as yeast and differentiated

cells from multicellular organisms. This is that many gene
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Figure 1. Transcription Elongation Is Coupled to Pre-mRNA Processing

Three stages of protein coding gene transcription are depicted. First, transcription of protein coding genes by RNA polymerase II (Pol II) involves an initial stage

where the polymerase is engaged with the gene promoter, but in a poised state. Productive elongation into the body of the gene has yet to commence. These

promoter-associated polymerases are shown to be associated with bidirectional transcription resulting in the production of short sense and antisense promoter

transcripts (Buratowski, 2008). Second, the initially poised polymerases switch to productive transcription elongation and read into the body of the gene. This

process is regulated by either developmental or cell signaling stimuli that remain largely uncharacterized. It is also associated with histone tail modifications

and a switch from Pol II C-terminal domain (CTD) serine 5 phosphorylation (Ser5P) to CTD Ser2P. The initial transcript is cotranscriptionally capped by replace-

ment of the triphosphate 50 terminus with a 7meGppp structure. Capping enzymes are recruited to Ser5P Pol II CTD. Finally, productive transcriptional elongation

is tightly coupled to cotranscriptional splicing which is facilitated by recruitment of splicing factors to the Pol II elongation complex. Nucleosomes are depicted as

brown discs. Pol II is depicted in purple with a DNA channel, CTD appendage, and exiting RNA transcript. H3K4Me3, histone H3 lysine 4 trimethylation.
connected to the extracellular environment through membrane

receptors (Komarnitsky et al., 2000; Peterlin and Price, 2006).

Onewell-characterizedpositive factor inhighereukaryotes is the

heterodimeric protein PTEFb comprising the Cdk9 kinase and

associated cyclin T (also known as CTDK1 in yeast), which gener-

ates CTD Ser2P patterns on Pol II elongating into the body of the

gene (Peterlin and Price, 2006). PTEFb directly interacts with the

HIV-1 early gene product Tat through its cyclin T component (Mar-

cello et al., 2004). Tat is a key transcription elongation factor

responsible for switching HIV-1 provirus from latency to full tran-

scriptional activity. It does this by recognizing short, 50 terminal

abortive transcripts made during early proviral transcription. These

short transcripts generate an RNA hairpin called TAR that directly

interacts with Tat. Consequently, Tat recruits PTEFb and so effi-

cient elongation proceeds across the proviral genome, resulting

in full HIV-1 expression. Close parallels likely exist between the

HIV-1 proviral promoter and the above-mentioned large set of

genes that make short 50 terminal abortive transcripts. To date,

no host encoding protein factor analogous to Tat has been identi-
fied. However, it is now appreciated that PTEFb itself is tightly

regulated by two negative factors, the small RNA 7SK and the

protein Hexim. These form an inhibitory trimeric complex with

Cdk9 effectively sequestering PTEFb away from transcription sites

in the nucleus (Nguyen et al., 2001). Again, the trigger that releases

Cdk9 from this repressive RNA protein complex is unknown but is

likely to be associated with phosphorylation of Hexim and Cdk9

through kinases sensitive to cell signaling cascades.

It Pays to be Flexible: Transcription and Chromatin
Conformation
Recent advances in microscopy have revealed that the nucleus

is highly dynamic, with both genes and their associated factors

showing remarkable mobility. Many inducible genes studied in

yeast relocate after activation, often juxtaposed with the nuclear

pore complex (NPC) (Akhtar and Gasser, 2007; Brown and

Silver, 2007). This effectively allows direct injection of the gene

transcript into the cytoplasm during the transcription process.

Interestingly, NPC-gene association often correlates with the
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capacity of some inducible genes to display transcriptional

memory (Ahmed and Brickner, 2007). This term refers to the

ability of a gene to reactivate more rapidly after short-term

repression than when it has been repressed for longer periods.

During short-term repression, the gene remains associated

with the NPC so that when it is reactivated it switches into active

mode more rapidly. Several features of chromatin appear to be

required for transcriptional memory, including modified histone

deposition (Brickner et al., 2007) and chromatin remodeling

activities (Kundu et al., 2007). Also, cytoplasmic factors such

as Gal1 may play a role through contacts with the cytoplasmic

face of the NPC (Zacharioudakis et al., 2007). In contrast to the

above analysis of the yeast nucleus, studies on nuclear organiza-

tion in higher eukaryotes have led to the view that repressed

heterochromatin is often associated with the nuclear lamina.

This is a filamentous layer of protein that coats the nuclear

face of the inner membrane. However, locus boundary elements

that act to insulate active genes from repressed chromatin are

also membrane associated, but in this case associate with the

NPC and so may align active genes with the direct exit rout

from nucleus to cytoplasm (Akhtar and Gasser, 2007).

Another characteristic feature of activated genes is that they

switch their conformation when activated. In this case, a loop

structure is predicted to occur in which the promoter and termi-

nator of a gene are in close proximity (Ansari and Hampsey,

2005; O’Sullivan et al., 2004), as detected by the chromatin liga-

tion technique called 3C (Dekker et al., 2002). Gene loop forma-

tion brings into play the 30 terminal RNA processing mechanism.

30 cleavage and polyadenylation of pre-mRNA are dictated by

polyA signals that define the end of the mRNA. These signals

are recognized by a substantial cleavage/polyadenylation

protein complex (termed here polyA complex) that is recruited

to CTD Ser2P through direct CTD-interacting domains (CIDs)

as well as RNA binding domains (RBDs) that specifically recog-

nize the pre-mRNA polyA signals. Specific CIDs and RBDs

have been identified on individual polyA complex subunits (Bent-

ley, 2005; Proudfoot, 2004). Some components of the polyA

complex are also detected at gene promoters through interaction

with general transcription factors TFIID (Dantonel et al., 1997) and

TFIIB (Wu et al., 1999), presumably as a result of gene looping.

Thus, mutation of particular polyA complex components

(Ssu72 or Pta1) or the polyA signals themselves (particularly the

conserved mammalian polyA signal, AAUAAA) causes a break-

down in gene loop structure (Perkins et al., 2008; Singh and

Hampsey, 2007). Interestingly, CTD phosphorylation patterns

are also correlated with gene looping. Thus, gene loop structures

are lost when CTD Ser5P is prevented from forming by inactiva-

tion of Kin28 (O’Sullivan et al., 2004). Similarly, the Ssu72 protein

has CTD Ser5P phosphatase activity, again pointing to a require-

ment for a specific CTD phosphorylation state for the formation of

gene loops (Krishnamurthy et al., 2004). Although the functional

significance of gene loops remains to be established, two poten-

tial roles have been proposed. First, they may act to retain Pol II

once a full transcription cycle has completed, allowing it to be

rechanneled back to the promoter for another round of transcrip-

tion. In effect, Pol II need never release from its gene location as it

is either poised on the promoter or held in a gene loop structure.

Second, gene looping may play a role in gene surveillance. A first
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or ‘‘pioneer’’ round of transcription may allow initial gene loop

formation to occur, provided that authentic polyA signals are

encountered by the elongating Pol II. This will then seal Pol II tran-

scription into a continuous productive mode (Figure 2).

The chromatin template is also modified during transcription in

part to enhance the efficiency of RNA synthesis and pre-mRNA

processing. CTD Ser5P acts to recruit the histone methylase

Set1, which trimethylates H3 lysine 4 (H3K4me3) over the

promoter proximal regions (Li et al., 2007). This may aid the

switch from nonproductive to productive transcriptional elonga-

tion. H3K4me3 marks also correlate with enhancement of

capping as well as the recruitment of splicing factors that act

on the emerging nascent RNA from the elongating Pol II complex

(Sims et al., 2007). As with NPC association, H3K4me3 marks

may extend through multiple rounds of transcription, affording

more rapid reactivation of transcription (Ng et al., 2003). Set2

similarly trimethylates H3K36 and in this case is recruited by

interaction with CTD Ser2P (Li et al., 2007; Shilatifard, 2006).

Together with other elongation factors such as PAF (Rosonina

and Manley, 2005), histone chaperones such as Spt6 (Yoh

et al., 2007) and FACT (Belotserkovskaya and Reinberg, 2004)

and the chromatin remodeler Chd1 (Sims et al., 2007),

H3K36me3 marks may facilitate more efficient elongation and

coupled splicing and 30 end processing (Figure 1B). Analysis of

the complex alternatively spliced mammalian gene CD44 also

revealed a role for the chromatin remodeling enzyme SWI/SNF

in Pol II elongation and associated splicing factor recruitment

to alternatively spliced introns (Batsche et al., 2006).

Splicing and Packaging the Transcript
during Pol II Elongation
The view that most pre-mRNA splicing occurs cotranscription-

ally appears to prevail for all eukaryotes. In vivo studies on

Figure 2. Transcription at the Nuclear Pore

Gene transcription by Pol II induces chromosomal movement, whereby the

gene may associate with the nuclear pore complex and in so doing may

form a looped conformation that brings the promoter and terminator regions

into close apposition. This conformational change is illustrated by showing

both the gene promoter and terminator regions and the packaged transcript

associated with the nuclear pore complex in a looped conformation. Such

a structure facilitates efficient nuclear export of messenger ribonucleoproteins

(mRNPs). The positions of nucleosomes and Pol II (as in Figure 1) are indicated

along with the packaged transcript (yellow balls depict packaging proteins).



spliceosome recruitment to actively transcribing genes suggests

that there is an ordered association of first U1 small nuclear RNA

protein complex (snRNP) to a newly formed 50 splice site tran-

script followed by U2 and U5 snRNPs when the rest of the intron

is synthesized (Gornemann et al., 2005; Lacadie and Rosbash,

2005). The spliceosome then forms and splicing of adjacent

exons ensues. Coupled in vitro transcription:splicing systems

further suggest that splicing factors are more efficiently assem-

bled on gene templates transcribed by Pol II than on those

transcribed by T7 phage RNA polymerase (Das et al., 2007).

Consequently, Pol II-derived transcripts are more efficiently

spliced. This was shown to be due to interaction of U1 snRNP

as well as splicing regulatory proteins with Pol II CTD (Das

et al., 2007). In the infrequent and relatively short introns of yeast,

the advantage of cotranscriptional splicing appears less evident.

However, with higher eukaryotes, the large number and often

substantial size (>10 kb) of introns suggests a significant benefit

for dealing with these large intronic transcripts as expeditiously

as possible. One way to achieve this may be to cotranscription-

ally cleave the intron sequence. It can then be degraded by

exonucleases, and so long as the adjacent exons are retained

on the polymerase elongation complex, then splicing can still

occur. Evidence that cotranscriptional cleavage of intronic

RNA can occur without affecting splicing has been demon-

strated in both yeast and mammalian experimental gene

systems (Dye et al., 2006; Lacadie et al., 2006). Furthermore,

natural examples of cotranscriptional intronic cleavage abound,

as abundant intronic pre-microRNAs are all likely to be excised

from introns cotranscriptionally, yet adjacent exons in the host

gene are still effectively spliced together (Kim and Kim, 2007;

Morlando et al., 2008).

The direct interplay between transcription and splicing has

been demonstrated in a number of studies. Over 20 years ago it

was realized that the presence of a promoter-proximal intron

increased transcription (Brinster et al., 1988). Subsequently, it

was shown that this effect acts at least in part to enhance Pol II

initiation (Furger et al., 2002). Pol II elongation is also enhanced

by factors that directly interact with the splicing apparatus.

Thus, the elongation factor TAT-SF1 interacts with U2 snRNP

(Kameoka et al., 2004), whereas SC35, which is directly associ-

ated with splicing, promotes more efficient elongation through

potential transcriptional pause sites (Lin et al., 2008). These pause

sites are often found spread throughout mammalian genes. The

connection between transcription and alternative splicing in

mammals has also been extensively studied. In general, it is clear

that where alternative splice sites compete for splicing the elon-

gation rate of Pol II can profoundly affect the alternative splicing

ratios. Pol II elongation rate is in part dictated by specific

promoters, which may act to recruit a more or less processive

Pol II complex (Figure 1C) (de la Mata et al., 2003).

As well as splicing the emerging Pol II transcript, the pre-mRNA

must also be immediately packaged into an expanding complex

with RNA binding proteins. In yeast, this packaging process is

brought about by the THO/TREX complex, a multicomponent

complex whose members variously function in transcription elon-

gation, transcript-dependent recombination, and mRNA export

(Iglesias and Stutz, 2008; Kohler and Hurt, 2007). Significantly,

transcript packaging connects with both ends of the nuclear
gene expression pathway. SAGA, a component of the Mediator

complex required for Pol II initiation, interacts with a second

complex TREX2 that in turn makes contacts with both the NPC

and THO/TREX. At the other end, THO/TREX interacts with

nuclear export factors such as Mex67, and these factors act to

anchor messenger ribonucleoproteins (mRNPs) to the NPC

(Kohler and Hurt, 2007). Nuclear surveillance pathways operate

at this stage to preclude unspliced or aberrantly spliced mRNPs

from exiting the nucleus. Mlp1 is a key factor associated with the

NPC that is closely connected with this process (Casolari and

Silver, 2004). Mutants lacking THO/TREX components show

accumulated gene 30 ends tethered to the NPC (Rougemaille

et al., 2008). Also, 30 cleavage/polyadenylation is impaired, and

these aberrant NPC:mRNP associations lead to transcript

destruction (Saguez et al., 2008). The principal enzyme respon-

sible for this and most other cellular RNA turnover is the exosome.

This multisubunit complex in its nuclear form contains two

30-50 exonucleases, Rrp6 and Dis3, which possess most of the

RNase activity (Schmid and Jensen, 2008).

A key function of pre-mRNA protein packaging is to prevent the

tendency of naked RNA released from the RNA exit channel from

invading the DNA duplex behind the elongating Pol II. Single-

strand RNA may directly base pair with the DNA template strand,

thereby forcing the sense DNA into an extended single-stranded

region (Figure 3). Such structures are referred to as R loops.

Evidence that R loop formation is indeed a deleterious conse-

quence of failed pre-mRNA packaging comes from studies in

both yeast and mammalian cells. Mutants in the THO/TREX

complex were often found to possess a marked DNA damage

phenotype (Aguilera and Klein, 1990). Further characterization

of specific genes in these affected mutant strains revealed elon-

gation defects that were rescued by overexpressing RNase H or

by incorporating ribozymes into the transcribed genes (Huertas

and Aguilera, 2003). Both of these experiments were interpreted

as indicating the presence of RNA:DNA hybrids that were pre-

dicted to slow down elongating Pol II. Similarly, the DNA damage

phenotype was explicable by formation of single-strand DNA,

Figure 3. Fates of Transcripts Generated by Pol II Elongation

Transcripts generated by Pol II elongation have several different immediate

fates. They may be cotranscriptionally packaged into messenger ribonucleo-

proteins (mRNPs) and after identification of splicing signals may also be

cotranscriptionally spliced. Alternatively, naked transcripts may invade the

DNA duplex behind elongating Pol II to form R loop structures. Here, the

template DNA strand is base paired with the transcript forcing the nontemplate

strand into a single-stranded conformation. Efficient mRNA packaging into

mRNP particles (yellow) restricts R loop formation.
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which is likely prone to mutagenesis. These data were confirmed

in higher eukaryotic cells where depletion of serine/arginine-rich

(SR) protein ASF/SF2 induced a DNA damage phenotype. The

presence of single-strand DNA was also detected in these

studies via bisulphite treatment of chromatin isolated from

these ASF/SF2-depleted cells. This chemical treatment modifies

single-strand dC residues to dU, which can then be detected by

DNA sequence analysis (Li and Manley, 2005). It should be noted

that pre-mRNA packaging has not been well characterized in

higher eukaryotes. However, it is possible that packaging

focuses on exonic regions that are thought to be covered

by heterogeneous ribonucleoproteins (hnRNPs), of which SR

proteins are one subclass (Bourgeois et al., 2004; Glisovic

et al., 2008). Intronic sequence may be only loosely packaged

with these RNA binding proteins so that R loop formation by

introns is principally avoided by their removal via splicing. Conse-

quently, the loss of splicing factors may be predicted to increase

R loop formation.

Together to the End: Pre-mRNA Processing
and Pol II Termination
The final stages in transcription of a gene occur when the poly-

merase reads through functional polyA signals, generating pre-

mRNA sequences recognized by the large polyA complex. As

mentioned above, this complex is recruited to elongating Pol II

in part through direct interaction of its components, especially

Pcf11 CID with the CTD Ser2P elongation mark (Bentley, 2005;

Licatalosi et al., 2002; Proudfoot, 2004). What happens next

varies depending on the type of Pol II transcribed gene as well

as between different eukaryotes. In yeast, the polyA complex

recognizes a series of somewhat redundant AU-rich RNA

elements through direct RNA recognition domains. Successful

association of polyA complex with these RNA sequences

promotes transcript cleavage at the polyA site by a specific

polyA complex component (CPSF-73 in higher eukaryotes or

Ydh1 in yeast; Mandel et al., 2006) and subsequent polyadeny-

lation of the newly formed 30 terminus by Pap1, also an integral

component of the polyA complex (Proudfoot, 2004). This polya-

denylation process facilitates mRNA release from the transcrip-

tion site and its ultimate export through the NPC to cytoplasmic

translation. However, the elongating Pol II itself requires further

RNA processing steps to facilitate its release from the gene

template. A complex of three polypeptides, one called Rtt103,

containing a CID with specificity for CTD Ser2P, is recruited to

the 30 product of 30 end cleavage. The other component of this

complex, Rat1, then acts together with its cofactor, Rai1, as

a potent 50-30 exonuclease (often referred to as a torpedo) to

degrade the nascent transcript still being generated by Pol II

elongating past the polyA signal (Kim et al., 2004). Rapid degra-

dation of this final Pol II transcript catching up with the elongating

Pol II appears to be the key signal that finally stops this molecular

juggernaut in its tracks.

In higher eukaryotes, a similar termination mechanism is likely

to occur. However, the substantial length of genes in higher

eukaryotes requires that additional termination signals in

30 flanking regions of genes cooperate with the polyA signal to

promote Pol II termination. For several characterized genes,

transcription pause sites positioned just after the polyA signal
692 Cell 136, 688–700, February 20, 2009 ª2009 Elsevier Inc.
act to slow down elongating Pol II (Gromak et al., 2006). This

effectively provides time for the 50-30exonuclease Xrn2 (Rat1

homolog) to attach to the 30 cleavage product and degrade the

downstream transcript, catching up with the elongating Pol II

(Kaneko et al., 2007; West et al., 2004). An interesting variation

on this termination process occurs in other Pol II-transcribed

genes. Here, although no pause sites are present downstream

of the polyA signal, another termination element exists that is

often positioned over 1 kb downstream. This termination

element is associated with rapid cotranscriptional cleavage of

the nascent transcript at the termination site (Dye and Proudfoot,

2001). This then provides immediate access of Xrn2 at this

30 flanking region position, and thereby Pol II is directly termi-

nated. Surprisingly, this termination process mediated by

cotranscriptional cleavage occurs so quickly that it precedes

cleavage at the polyA signal. In effect Pol II is released from

the DNA template with the pre-mRNA still anchored to the CTD

through contacts with the polyA complex. This final pre-mRNA

processing step may therefore occur posttranscriptionally but

still on a Pol II platform (West et al., 2008).

A further variation on Pol II termination has been uncovered by

studies in yeast. In this case, a second Pol II termination process

has been shown to operate involving yet another protein

complex containing Nrd1, Nab3, and Sen1 protein components.

This termination mechanism is employed by Pol II transcripts

derived from snRNA or small nucleolar RNA (snoRNA) genes

as well as the rapidly expanding repertoire of so-called cryptic

unstable transcripts (CUTs) (Arigo et al., 2006; Steinmetz et al.,

2001). A unifying feature of genes encoding snRNAs, snoRNAs,

and CUTs is that they are all relatively small transcription units.

The mechanism of this alternative Pol II termination process is

that Nrd1 interacts with Pol II, again through a CID domain. Inter-

estingly, this CID prefers CTD Ser5P, which neatly fits with the

action of this termination mechanism on shorter Pol II gene tran-

scripts (Gudipati et al., 2008; Vasiljeva et al., 2008). Termination

signals for this alternative mechanism are redundant GUAA/G

and UCUU sequences recognized by RNA binding domains of

Nrd1 and Nab3, respectively. An unresolved issue for this termi-

nation process is how these RNA signals remain accessible for

Nrd1 and Nab3 rather than being packaged into mRNPs by the

action of THO/TREX. Indeed, this leads to the question of how

promoter-proximal Nrd1-dependent termination is prevented in

regular protein coding genes that need to read through the whole

(usually longer gene) to the regular cleavage/polyA signals where

the polyA complex followed by Rat1 and associated factors

promote Pol II termination.

This final stage in pre-mRNA cotranscriptional processing is

both a key step in efficient gene expression and a critical control

point in preventing aberrant gene expression. When 30 process-

ing/polyadenylation is either inefficient or compromised by gene

mutation, then the nuclear exosome is recruited to rapidly

degrade the unwanted transcript. Interestingly, the Nrd1 termi-

nation pathway achieves this process by directly recruiting the

exosome through interaction with Nrd1 (Vasiljeva and Buratow-

ski, 2006). In effect, Nrd1-mediated Pol II termination is associ-

ated with rapid transcript degradation. snRNAs and snoRNAs

escape this exosome-mediated degradation by protecting the

mature RNAs cotranscriptionally with specific RNA binding



proteins (Morlando et al., 2004). In contrast, CUTs have no such

protection and are rapidly degraded. It should also be mentioned

that the above described mechanisms of Pol II termination must

somehow be reconciled with the phenomena of gene loop

formation and gene 30 end association with the NPC. Both of

these mechanisms require functional 30 end processing and

termination signals. It therefore seems plausible that Pol II termi-

nation does not simply release Pol II into the nucleoplasm but

rather that terminated Pol II is retained at specific nuclear loca-

tions that allow its rapid reassociation with gene promoters.

Cytoplasmic Events
In addition to these interconnected events in the nucleus, there

are also well-documented connections between nuclear

processes and downstream cytoplasmic events. This influence

is mediated by the repertoire of proteins that, together with the

mRNA, make up the mRNP (Glisovic et al., 2008; Moore, 2005).

Many mRNP proteins first encounter the transcript as it emerges

from Pol II in the nucleus and then accompany the processed

mRNA out to the cytoplasm (Figure 4). mRNP proteins can be

thought of as adaptors that add functionality to a transcript by

interfacing with a wide variety of cellular machineries. Some of

these adaptors recognize particular structures (such as the

50 cap or the 30 polyA tail) or short consensus sequences, whereas

others become associated primarily as a consequence of the

mRNA manufacturing process. Of particular note is the splicing

history of an mRNA, which can influence almost every stage of

its subsequent metabolism, including how quickly and efficiently

it is exported from the nucleus, whether it is correctly localized in

the cytoplasm, how efficiently it is taken up by the translation

machinery, and whether it is a target for nonsense-mediated

mRNA decay (NMD) (Giorgi and Moore, 2007; Le Hir et al., 2003).

The Exon Junction Complex and Other Molecular Graffiti
To date a surprising number of mRNP proteins have been shown

to exhibit some degree of splicing dependence in their associa-

tion with mRNA (Merz et al., 2007). One of the most extensively

studied is the exon junction complex (EJC), a set of proteins

stably deposited on spliced mRNAs about 20 nucleotides

upstream of exon-exon junctions (Le Hir et al., 2000). That

such a complex might exist was initially intimated by the then

unexpected observation that recognition of termination codons

as premature in mammalian mRNAs depends on their spatial

relationship to the 30-most exon-exon junction. This suggested

that the splicing machinery was capable of tagging splice junc-

tions with some sort of mark that could signify to downstream

processes the positions at which introns had resided in the orig-

inal transcript (Thermann et al., 1998; Zhang et al., 1998). We

now know that this molecular tag consists of a tri- or tetrameric

protein core stably deposited on the splice donor exon at a late

stage in the splicing process (Le Hir and Andersen, 2008). This

core accompanies the mRNA to the cytoplasm, where EJCs

within open reading frames (ORFs) are removed by the first or

‘‘pioneer’’ round of translation (Dostie and Dreyfuss, 2002;

Lejeune et al., 2002). In both the nucleus and cytoplasm, other

factors that associate more dynamically interface with the EJC

core to mediate its widespread effects on mRNA metabolism

(Tange et al., 2004).
The mystery of how the EJC core remains stably bound to

spliced mRNAs without benefit of either covalent attachment or

significant structure or sequence specificity was solved by iden-

tification of the DEAD-box protein eIF4AIII (DDX48) as the main

RNA anchoring constituent (Shibuya et al., 2004). DEAD-box

proteins, a subgroup of the DExH/D-box family of RNA-depen-

dent ATPases, are often presumed to function as RNA or RNP

remodelers on the basis of their sequence similarity to the SF2

family of DNA helicases (Cordin et al., 2006; Jankowsky and Fair-

man, 2007). But within the EJC core, inhibition of eIF4AIII ATPase

activity by its binding partners Y14 and Magoh locks eIF4AIII into

a stable RNA binding configuration. An additional core protein,

MLN51, increases the affinity of eIF4AIII for RNA, which is other-

wise low (Ballut et al., 2005). Thus, as a component of the EJC,

eIF4AIII functions not as a helicase or translocase, but rather as

a regulatable, sequence-independent RNA binding protein.

This ‘‘clothes peg’’-like activity of eIF4AIII both preserves the

synthetic history of the mRNA and adds functionality to the

mRNP as a binding platform for other key regulatory factors.

Intriguingly, two other DEAD-box proteins, DDX3 and DDX5/

p68, were recently shown to associate with spliced mRNAs in

a manner similar to the EJC (that is, their association required

both splicing and the EJC binding region about 20 nucleotides

upstream of the splice junction) (Merz et al., 2007). Like the EJC

proteins, DDX3 and DDX5/p68 have been functionally implicated

in diverse processes including transcription, splicing, mRNA

export, translation, and mRNA decay (Fuller-Pace and Ali,

2008; Rosner and Rinkevich, 2007). Currently, it is unknown

whether these new DEAD-box proteins act in concert with

eIF4AIII-containing EJCs or whether they are themselves

anchors for alternate EJC-like complexes. Supporting the latter

notion is evidence that the recruitment and/or function of some

Figure 4. Splicing Factors Contribute to mRNP Export

Messenger ribonucleoprotein (mRNP) components associated with splicing

contribute to mRNA export in mammalian cells. Both the THO/TREX complex

and the exon junction complex (EJC) are loadedonto mRNAs asa consequence

of splicing. Splicing-dependent hypophosphorylation of shuttling SR proteins

may also stabilize their association with mRNA. Both hypophosphorylated

SR proteins and the THO/TREX complex can act as export adaptors via inter-

action with the nuclear export receptor NXF1/TAP. Positioning of the THO/

TREX complex near the 50 cap may assist mRNAs in exiting the nucleus

50 end first to more efficiently engage the cytoplasmic translation machinery.
Cell 136, 688–700, February 20, 2009 ª2009 Elsevier Inc. 693



splicing-dependent mRNP proteins can occur independently of

eIF4AIII (Gehring et al., 2005; Zhang and Krainer, 2007).

Other mRNP components with direct links to splicing include

the shuttling serine/arginine-rich (SR) proteins. These proteins

join pre-mRNAs cotranscriptionally and generally recognize

short consensus sequences by way of one or two N-terminal

RNA recognition motifs (RRMs). A characteristic C-terminal

domain rich in arginine/serine dipeptides (the RS domain) can

serve either as a protein-protein or a protein-RNA interface and

is subject to dynamic serine phosphorylation (Bourgeois et al.,

2004; Huang and Steitz, 2005). In contrast to the EJC, which

has no apparent role in splicing (Shibuya et al., 2004; Zhang

and Krainer, 2007), SR proteins are key players in recruiting the

splicing machinery to constitutive splice sites, in spliceosome

assembly and in directing alternative splicing (see Review by

M.C. Wahl, C.L. Will, and R. Luhrmann on page 701 of this issue).

Dependent on their binding site context within a particular tran-

script (that is, intronic or exonic), their posttranslational modifica-

tion state, and the levels of other splicing regulators in that cell

type, various SR proteins can act to either enhance or inhibit

splicing of nearby exons and splice sites (Bourgeois et al.,

2004). Upon completion of pre-mRNA processing, those SR

proteins bound to exonic sequences can then accompany the

mRNA to the cytoplasm where, like the EJC, they can direct

mRNA localization, translation, and decay (Huang and Steitz,

2005). Further paralleling the EJC, several SR proteins have

recently been shown to exhibit some degree of splicing-depen-

dent mRNP recruitment when splicing is uncoupled from tran-

scription in vitro (Merz et al., 2007).

Splicing and Subcellular mRNA Localization
As discussed above, a key mediator of nuclear mRNA export is

the THO/TREX complex. This assemblage principally consists of

the tetra- (budding yeast) or pentameric (metazoans) THO

complex, which functions in transcription elongation and

transcript-dependent recombination, plus the mRNA export

factors Yra1 (REF/Aly in mammals) and Sub2 (UAP56 in

mammals). Yra1 is an RRM-containing RNA binding protein

that bridges the mRNA to the export receptor Mex67 (NXF1/

TAP in mammals), whereas Sub2 is a DEAD-box protein that

also functions in spliceosome assembly (Iglesias and Stutz,

2008; Kohler and Hurt, 2007; Shen et al., 2008). In budding yeast,

where most genes lack introns, the THO/TREX complex is

closely associated with the transcription machinery, where it is

thought to coat the length of intronless transcripts with Yra1

and Sub2 as the RNA emerges from the elongating polymerase

(Abruzzi et al., 2004). In mammals, however, where most genes

contain multiple introns, REF/Aly and UAP56 appear to be

recruited more as a consequence of splicing than of transcrip-

tion. In vivo, both proteins colocalize with transcription sites for

intron-containing genes but not with mutant versions incapable

of splicing (Custodio et al., 2004). Further, when uncoupled

from transcription in vitro, THO/TREX complex recruitment is

strongly 50 cap and splicing dependent (Cheng et al., 2006;

Masuda et al., 2005). Although REF/Aly and UAP56 were origi-

nally thought to be recruited via the EJC, more recent evidence

indicates that these proteins primarily reside on the region imme-

diately downstream of the cap, tethered there by an interaction
694 Cell 136, 688–700, February 20, 2009 ª2009 Elsevier Inc.
between REF/Aly and the nuclear cap binding protein CBP80

(Cheng et al., 2006). Thus, unlike the EJC, which is presumably

deposited at every exon-exon junction, the mammalian THO/

TREX complex appears to associate most strongly with the

50-most exon of spliced mRNAs. These findings nicely reconcile

a long-standing conundrum that the cap facilitates the export of

spliced mRNAs but is of lesser consequence for intronless

mRNAs (Masuyama et al., 2004). Whereas REF/Aly is not essen-

tial for bulk mRNA export in metazoans (Gatfield and Izaurralde,

2002; Longman et al., 2003), its recruitment via splicing can

clearly increase the speed and efficiency of the export process

(Luo and Reed, 1999; Valencia et al., 2008). Furthermore, the

positioning of the THO/TREX complex at the 50-end of spliced

mRNAs has been proposed to impart directionality so that

mRNAs emerge from the nuclear pore 50-end first to more effi-

ciently engage the translation machinery (Valencia et al., 2008).

In addition to the THO/TREX complex, SR and SR-like proteins

can also function as mRNA export adaptors (Huang and Steitz,

2005). As with REF/Aly, the shuttling SR proteins SRp20, 9G8

and ASF/SF2 can all serve as mRNP binding sites for the general

export receptor NXF1/TAP. Intriguingly, NXF1/TAP preferentially

interacts with the shuttling SR proteins in their hypophosphory-

lated state, the state thought to be active for mRNA export.

Conversely, SR proteins are initially recruited to pre-mRNAs for

splicing in a hyperphosphorylated state, and become partially

dephosphorylated as the splicing reaction proceeds. Thus, it

has been suggested that the export competence of the spliced

mRNP is signaled by the phosphorylation status of its bound

SR proteins (Huang and Steitz, 2005; Kohler and Hurt, 2007).

Given recent evidence that some SR proteins (including 9G8

and ASF/SF2) exhibit splicing-dependent mRNP recruitment

in vitro (Merz et al., 2007), perhaps their partial dephosphoryla-

tion during splicing also serves to stabilize their interaction with

exonic regions, enabling them to remain associated with the

spliced mRNP. After export, rephosphorylation of the SR

domains is thought to trigger their release from the mRNA and

facilitate their reimport into the nucleus (Huang and Steitz,

2005; Kohler and Hurt, 2007). Such a cycle of nuclear dephos-

phorylation-dependent mRNA and export receptor binding and

cytoplasmic rephosphorylation-dependent mRNA and export

receptor release has been well documented for the SR-like

mRNA export adaptor Npl3 in budding yeast (Gilbert and

Guthrie, 2004).

Once released from the nuclear pore, many mRNAs are further

localized to particular sites in the cytoplasm (Besse and Ephrussi,

2008; see Review by K.C. Martin and A. Ephrussi on page 719 of

this issue). A recent genome-wide study of over 2300 mRNAs in

Drosophila embryos revealed that a remarkable 71% of these

exhibited a distinct localization pattern. Further, tight colocaliza-

tion of encoded proteins with their mRNAs suggests that subcel-

lular protein localization patterns are largely driven by mRNA

localization (Lecuyer et al., 2007). One localized Drosophila

mRNA that has been particularly well-studied is oskar. oskar

mRNA is produced by nurse cell nuclei and imported into the

developing oocyte, where it is subsequently localized to the

posterior pole. Restricted translation of oskar protein at this

pole is crucial for early pattern formation in the developing

embryo. Among factors required for oskar mRNA transport are



the EJC core factors eIF4AIII, Tsunagi, Mago Nashi, and Barentz

(the Drosophila orthologs of Y14, Magoh, and MLN51, respec-

tively) (Palacios, 2002; Palacios et al., 2004), and splicing of the

first intron in oskar pre-mRNA is essential for subsequent

mRNA localization (Hachet and Ephrussi, 2004). Consistent

with this, all four EJC core factors initially accumulate with oskar

at the posterior pole (Palacios, 2002; Palacios et al., 2004).

Because oskar’s first intron is within the ORF, its associated

EJC is subject to removal by the pioneer round of translation

(Dostie and Dreyfuss, 2002; Lejeune et al., 2002). This indicates

that oskar experiences no pioneer round until it reaches its final

destination, consistent with the idea that mRNAs are maintained

in a translationally quiescent state during the localization process

(Besse and Ephrussi, 2008; Giorgi and Moore, 2007). What

remains to be resolved is the exact role of the EJC in oskar local-

ization—is it necessary for translational silencing, or does it

participate more directly as part of the transport machinery?

Also, oskar is the only mRNA to date whose localization is known

to have a clear splicing dependence. Therefore, whether the EJC

is a general player in mRNA localization remains to be seen.

Splicing Makes for Better Translation
Another well-documented effect of splicing on cytoplasmic

mRNA metabolism is enhanced translational efficiency (Le Hir

et al., 2003; Le Hir and Seraphin, 2008). That is, spliced mRNAs

on average yield more protein molecules than do otherwise iden-

tical cDNA transcripts. This is because spliced mRNAs more effi-

ciently engage the translation machinery during the pioneer

round of translation, such that a greater percentage of spliced

mRNA molecules end up associated with polysomes than do

unspliced mRNAs. One advantage of this phenomenon is that

it favors the translational uptake of newly made mRNAs that

are still associated with their nuclear-acquired proteins over

older transcripts that have already been translated and have

therefore lost these components. This effect may shorten the

lag time between transcriptional induction and protein expres-

sion, which could be particularly important for signal transduc-

tion pathways triggering new mRNA synthesis.

A recent flurry of papers has begun to sort out the previously

mysterious means by which the EJC serves to enhance transla-

tion initiation (Figure 5A). One proposed mechanism involves

a bridge between the EJC and the 48S preinitiation complex

mediated by the Y14:Magoh binding protein PYM (Diem et al.,

2007). Another is through EJC-dependent recruitment of the

40S ribosomal protein S6 kinase 1 (S6K1) (Ma et al., 2008).

S6K1 is a central player in the TOR signaling cascade, a major

regulator of protein expression related to cell growth (Bhaskar

and Hay, 2007). When activated by the TOR pathway, S6K1

enhances translation initiation by activating stimulatory and inac-

tivating inhibitory factors bound at and around the 50 cap of TOR

target mRNAs. New work from Blenis and colleagues has re-

vealed that activated S6K1 is specifically recruited to newly

synthesized mRNAs via EJC-bound SKAR (a S6K1 target),

where it promotes the pioneer round of translation (Ma et al.,

2008). Supporting this idea that the TOR pathway is a general

player in the preferential translation of mRNPs still associated

with their nuclear-acquired factors, Cáceres and coworkers

recently demonstrated that the shuttling SR protein ASF/SF2
also enhances translation initiation via recruitment of S6K1 (Mi-

chlewski et al., 2008). Like the EJC, ASF/SF2 had previously

been shown to enhance translation of bound mRNAs, thereby

providing another link between splicing and translation (Sanford

et al., 2004). In addition to S6K1, ASF/SF2 also interacts with

PP2A phosphatase, an antagonist of S6K1-dependent phos-

phorylation. An attractive model, which remains to be tested, is

that ASF/SF2 plays a dual role in promoting translation initiation

by both recruiting activated S6K1 and inhibiting factor dephos-

phorylation by PP2A (Michlewski et al., 2008).

Splicing and NMD: Not All Nonsense
One of the strongest connections between nuclear and cyto-

plasmicmRNA metabolism is the linkbetween pre-mRNA splicing

and nonsense-mediated mRNA decay (NMD). NMD is a transla-

tion-dependent degradation pathway specifically targeting

mRNAs wherein the first inframe stop codon is in a poor context

for translation termination. In mammals, the presence of one or

more EJCs 50 or more nucleotides downstream of such a stop

codon can greatly enhance the efficiency of NMD (Chang et al.,

2007; Stalder and Muhlemann, 2008). Thus, in the vast majority

of mammalian genes, the constitutive stop codon is either in the

last exon or within 50 nucleotides of the final exon-exon junction

(Nagy and Maquat, 1998). The means by which the EJC enhances

NMD is by serving as a binding platform for the NMD-specific

factors Upf2 and Upf3. The central player in this process is the

RNA helicase Upf1, which forms a surveillance or SURF (Smg1-

Upf1-eRF1-eRF3) complex with its cognate kinase, Smg1, and

Figure 5. Splicing Factors Regulate Translation Initiation

Effects of splicing-dependent mRNP components on translation initiation

(A) Both the exon junction complex (EJC) and ASF/SF2 bound to spliced

mRNA can promote the first or ‘‘pioneer’’ round of translation by recruiting

40S ribosomal protein S6 kinase 1 (S6K1), a component of the TOR signaling

cascade. For the EJC pathway, this is accomplished via the EJC-interacting

protein SKAR. ASF/SF2 can also promote translation initiation by inhibiting

the S6K1 antagonist PP2A phosphatase.

(B) When an EJC is located more than 50 nucleotides downstream of a prema-

ture termination codon (PTC), interaction between the EJC and SURF complex

causes phosphorylation of Upf1, which then inhibits additional rounds of trans-

lation by an interaction with the translation initiation factor eIF3.
Cell 136, 688–700, February 20, 2009 ª2009 Elsevier Inc. 695



Figure 6. Splicing Patterns of Various NMD

Substrates

(A) One function of nonsense mediated decay

(NMD) is to eliminate mutant mRNAs containing

a truncated open reading frame (red bar).

(B) Examples of alternative splicing patterns used

to regulate gene expression via NMD. At low

concentrations of the encoded protein, the default

splicing pattern (top) results in a full-length open

reading frame and stable protein expression.

However, when the encoded protein concentra-

tion becomes too high, it alters splicing of its

own message (bottom) to include a PTC. Inclusion

of a ‘‘poison exon’’ that introduces a PTC is typical

of SR proteins, which are usually splicing activa-

tors, whereas exon skipping is typical of heteroge-

neous ribonucleoproteins (hnRNPs), which tend to

act as splicing repressors.

(C) The mammalian Arc gene contains two introns

downstream of its normal stop codon, making the

constitutively spliced mRNA a natural NMD target.
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NMD provides an important clean up and quality control function.

Additionally, by eliminating unproductively spliced mRNAs, NMD

may allow organisms to continually sample new alternative splice

forms, some of which could have beneficial activities on an

evolutionary timescale.

Yet, this clean up and mRNA quality control function is far from

NMD’s sole role in the cell. Recent evidence indicates that NMD

is also a key player in the posttranscriptional regulation of wild-

type genes (Stalder and Muhlemann, 2008). For example,

numerous pre-mRNA splicing factors appear to regulate their

own expression by targeting their mRNAs to NMD when intracel-

lular protein concentrations become too high. This is typically

accomplished by altering the pre-mRNA splicing pattern, such

that the alternatively spliced mRNA carries an EJC downstream

of the stop codon and so is an NMD target (Figure 6B) (McGlincy

and Smith, 2008). In this new twist on a classic self-regulatory

feedback loop, the combination of alternative splicing and

NMD functions to maintain cellular protein concentrations within

an optimal range. Indeed, some of the more global alternative

splicing changes observable in cells wherein NMD has been

inhibited most likely result from pleiotropic effects induced by

misregulation of key alternative splicing factors in this way.

Other mRNAs are natural NMD targets due to constitutively

spliced introns in their 30 UTRs (Figure 6C). One such example is

Arc/Arg3.1 (activity-regulated cytoskeletal-associated protein/

activity-regulated gene 3.1), an immediate early gene whose

expression is rapidly induced upon neuronal activity. Arc protein

serves as a key modulator of multiple forms of neuronal plasticity

and is essential for the consolidation of long-term memory. Upon

transcriptional induction, Arc mRNA is trafficked to dendrites

where it is locally translated at activated synapses. In mammals,

the Arc gene has two conserved introns in its 30 UTR, and Arc

mRNA exhibits translation-dependent decay via the Upf1

pathway. Interference with EJC deposition leads to increased

levels of Arc protein at synapses and quantifiable changes in

synaptic scaling (Giorgi et al., 2007). Arc thus illustrates another

use of NMD to regulate gene expression. Because NMD

substrates are stable as long as they remain translationally
the release factors eRF1 and eRF3 bound to the ribosome stalled

at the stop codon. Contact between the SURF complex and Upf2

bound to a downstream EJC triggers phosphorylation of Upf1 by

SMG1 (Kashima et al., 2006). By a mechanism yet to be eluci-

dated, phosphorylated Upf1 promotes recruitment of the RNA

decay machinery, thus targeting the bound RNA for rapid degra-

dation. But, even before the mRNA is eliminated, phosphorylated

Upf1 apparently inhibits further rounds of translation by prevent-

ing conversion of 48S preinitiation complexes into 80S ribosomes

through interaction with eIF3 (Isken et al., 2008). Thus, when posi-

tioned downstream of a stop codon, the EJC has the opposite

effect on protein expression from when it is situated in the

50 untranslated region (UTR) or ORF (Figure 5B). Conversely, the

efficiency of NMD is also affected by the efficiency of such

upstream splicing events (Gudikote et al., 2005). Consistent

with their roles in facilitating translation of newly synthesized

mRNAs (see above), both the EJC and ASF/SF2 have been impli-

cated in this additional splicing-dependent enhancement of NMD

(Gudikote et al., 2005; Zhang and Krainer, 2004). Indeed, it has

been suggested that efficient splicing and EJC deposition

evolved to enhance both protein production and mRNA surveil-

lance (Gudikote et al., 2005).

NMD was originally described as a means for eliminating

mutant or malformed mRNAs containing unnatural or premature

termination codons (PTCs) (Figure 6A). Such mRNAs are

produced from mutant alleles containing a frameshift or

nonsense codon produced for example by unproductive rear-

rangements at V(D)J loci in B and T cells or from errors introduced

into individual mRNA molecules by the transcription and pre-

mRNA processing machineries (Chang et al., 2007; Isken and

Maquat, 2007). Indeed, such mutant alleles account for up to

30% of all human hereditary disorders (Holbrook et al., 2004).

In some cases, such as the unc-54 myosin heavy chain gene in

the nematode C. elegans, it has been well documented that the

C-terminally truncated proteins encoded by PTC-containing

alleles can exert dominant negative effects if the NMD pathway

is genetically disabled (Pulak and Anderson, 1993). Thus, by sup-

pressing expression of potentially deleterious truncated proteins,



quiescent, such mRNAs can accumulate at specific sites in the

cytoplasm where they may be poised for rapid response to

external stimuli. Upon translational activation, rapid NMD onset

could quickly curtail protein synthesis, resulting in a tightly

controlled burst of the desired product. Indeed, given that

mammalian NMD is thought to occur coincident with the pioneer

round of translation (Isken and Maquat, 2007), constitutive NMD

targets potentially encode just a single polypeptide prior to their

demise. Thus, unlike the cases above where NMD of alternatively

spliced mRNAs is exploited to lower mRNA and protein levels in

bulk, activation and degradation of constitutive NMD targets

may serve as a means to produce tightly controlled bursts of

protein at distinct subcytoplasmic locations (Giorgi et al., 2007).

Conclusion
This review attempts to chart the amazingly complex process of

gene expression in eukaryotes. This begins with pre-mRNA

synthesis from an active gene in nuclear chromatin and ends

with degradation of the mature mRNA at often distant sites of

protein synthesis in the cytoplasm. It is increasingly clear that

enormous trouble is taken to both streamline this process for

productive gene expression and to quickly eliminate erroneous

mRNAs that might otherwise result in molecular disaster. At

every point along the way, multifunctional proteins and RNP

complexes facilitate communication between upstream and

downstream steps, providing both feedforward and feedback

information essential for proper coordination of what can only

be described as an intricate and astonishing web of regulation.
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