Michelle Neary, Ph.D.,

Facility Director

Hunter College of the City University of New York
Department of Chemistry
695 Park Avenue
New York, NY 10021

Email: michelle.neary@hunter.cuny.edu
Phone: (212) 396-6687

Description of the Facility

Mission

The mission of the CUNY X-ray Facility is to perform single-crystal analyses for the structure determination of molecules, which make up a crystal. This technique is called single-crystal X-ray crystallography. It is the ultimate method for definitive determination of molecular structures at the atomic level for both organic and inorganic compounds. Its uses range from simple identification of compounds to various exotic configuration and conformational studies.
Instruments

**Bruker-Nonius KappaCCD System**


Capabilities: The KappaCCD, acquired in 2001, embodies the state-of-the-art technologies for rapid, precise, and accurate measurements. It is particularly useful for determining crystal structures of inorganic compounds containing heavy atoms, such as technetium and rhenium, to minimize absorption-correction errors.

**Enraf-Nonius CAD4**

Nonius CAD4 serial diffractometer, equipped with a scintillation detector and a liquid-nitrogen low-temperature device, on a Nonius Diffractis 586 X-ray generator with a copper sealed tube.

Capabilities: A serial diffractometer collects one diffraction spot at a time. This CAD4 is an excellent instrument for X-ray powder diffraction studies, which can illustrate, display, and apply the principles of crystallography. A CAD4 diffractometer requires little maintenance.

Instrument: Nonius CAD4 serial diffractometer, equipped with a scintillation detector, liquid-nitrogen low-temperature device, and a long 2theta-detector arm, on a Nonius FR571 X-ray generator with a copper rotating anode.

Capabilities: The long 2theta-detector arm allows better resolution of diffraction spots for crystals with long unit-cell parameters. The signal-to-noise ratio is higher than for data from a sealed tube; and thus smaller crystals may be used to collect data.

The low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled, the diffraction patterns may change, indicating that the crystal is not as stable as thought. Low temperatures can make possible analyses of compounds whose crystallinity deteriorates at ambient temperature.