Description of the Facility

Mission

The mission of the CUNY X-ray Facility is to perform single-crystal analyses for the structure determination of molecules, which make up a crystal. This technique is called single-crystal X-ray crystallography. It is the ultimate method for definitive determination of molecular structures at the atomic level for both organic and inorganic compounds. Its uses range from simple identification of compounds to various exotic configuration and conformational studies.
Instruments

Bruker-Nonius KappaCCD System

Capabilities: The KappaCCD, acquired in 2001, embodies the state-of-the-art technologies for rapid, precise, and accurate determination of the unit-cell parameters and cell-volume details of organic and inorganic compounds containing heavy atoms, such as, technetium and rhenium, to minimize absorption-correction errors.

Enraf-Nonius CAD4

Nonius CAD4 serial diffractometer, equipped with a scintillation detector and a liquid-nitrogen low-temperature device, on a Nonius Diffractis 586 X-ray generator with a copper sealed tube.

Capabilities: A serial diffractometer collects one diffraction spot at a time. This CAD4 is an excellent instrument for diffraction studies of inorganic compounds and metals, such as iron, nickel, copper, and silver, and it also makes a contribution to the field of material science.

Nonius CAD4

Instrument: Nonius CAD4 serial diffractometer, equipped with a scintillation detector, liquid-nitrogen low-temperature device, and a long 2theta-detector arm, on a Nonius FR571 X-ray generator with a copper rotating anode.

Capabilities: The long 2theta-detector arm allows better resolution of diffraction spots for crystals with long unit-cell lengths, and the low-temperature option provides a better signal-to-noise ratio for data collection. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer.

The low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled to low temperatures, the low-temperature options immensely improve the flexibility of a diffractometer.