Description of the Facility

Mission
The mission of the CUNY X-ray Facility is to perform single-crystal analyses for the structure determination of molecules, which make up a crystal. This technique is called single-crystal X-ray crystallography. It is the ultimate method for definitive determination of molecular structures at the atomic level for both organic and inorganic compounds. Its uses range from simple identification of compounds to various exotic configuration and conformational studies.

Instruments

Bruker-Nonius KappaCCD System

Capabilities: The KappaCCD, acquired in 2001, embodies the state-of-the-art technologies for rapid, precise, and accurate data collection. It is ideal for analyzing inorganic compounds containing heavy atoms, such as technetium and rhenium, to minimize absorption-correction errors.

Enraf-Nonius CAD4

Enraf-Nonius CAD4 serial diffractometer, equipped with a scintillation detector and a liquid-nitrogen low-temperature device, on a Nonius Diffractis 586 X-ray generator with a copper sealed tube.

Capabilities: A serial diffractometer collects one diffraction spot at a time. This CAD4 is an excellent instrument for small-molecule crystallography. It is relatively low cost and can illustrate, display, and apply the principles of crystallography. A CAD4 diffractometer requires little maintenance.

Instrument: Nonius CAD4 serial diffractometer, equipped with a scintillation detector, liquid-nitrogen low-temperature device, and a long 2theta-detector arm, on a Nonius FR571 X-ray generator with a copper rotating anode.

Capabilities: The long 2theta-detector arm allows better resolution of diffraction spots for crystals with long unit-cell lengths. The signal-to-noise ratio is higher than for data from a sealed tube; and thus smaller crystals may be used to collect data.

The low-temperature options immensely improve the flexibility of a diffractometer. When a crystal is cooled, powder patterns are sharper, and the structure is better resolved, allowing different phases of a crystal to be indexed, and a more accurate structure can be obtained. The low-temperature options are particularly useful for materials that exist only in the solid state at low temperatures.