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Abstract

Differential gene expression (DGE) analysis is one of the most common applications of RNA-sequencing (RNA-seq) data.
This process allows for the elucidation of differentially expressed genes across two or more conditions and is widely used in
many applications of RNA-seq data analysis. Interpretation of the DGE results can be nonintuitive and time consuming due
to the variety of formats based on the tool of choice and the numerous pieces of information provided in these results files.
Here we reviewed DGE results analysis from a functional point of view for various visualizations. We also provide an
R/Bioconductor package, Visualization of Differential Gene Expression Results using R, which generates information-rich
visualizations for the interpretation of DGE results from three widely used tools, Cuffdiff , DESeq2 and edgeR. The
implemented functions are also tested on five real-world data sets, consisting of one human, one Malus domestica and three
Vitis riparia data sets.
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Introduction
Next-generation sequencing techniques enable researchers to
access far more massive amounts of data than previously avail-
able [1–5]. Specifically, RNA-sequencing (RNA-seq) procedures
provide an abundance of information regarding the gene expres-
sion levels of various organisms across multiple conditions at a
high resolution [6–8]. Naturally arising from this information is
the concept of (differentially expressed genes) DEGs, which are
genes that have expression levels determined to be significantly
differentially expressed across two or more conditions [9, 10].
Specific tools have been developed to determine which genes are

differentially expressed (Table 1). Differential gene expression
(DGE) tools perform statistical tests based on quantifications of
expressed genes derived from computational analyses of raw
RNA-seq reads (e.g. mapping [10–21] and assembly [10, 22–28])
to determine which genes have a statistically significant differ-
ence, while also providing information related to the expression
level and pairwise magnitude of difference for each gene. DGE
analyses can provide considerable insight into the genetic mech-
anisms in organisms that are contributing to phenotypic dif-
ferences, including plant growth patterns [29–31], tumor origin
detection [32] and the study of microbiomes [33].
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Table 1. Citation counts, percentages of commonly referenced DGE
tool citations and year of release for edgeR [34], Cuffdiff/Cuffdiff2
[35, 36], DESeq2 [37], limma [38], DEGseq [39], baySeq [40], SAMseq
[41], sleuth [42] and NOIseq [43]. All counts were tabulated using the
Google Scholar citation counts for the respective tool references as
of 2 February 2018

DGE Tool
Citation
Count Percentage Publish Year

edgeR [34] 7175 32.3% 2010
Cuffdiff/Cuffdiff2 [35, 36] 6103 27.5% 2012/2013
DESeq2 [37] 4355 19.6% 2014
limma [38] 2451 11.0% 2015
DEGseq [39] 1244 5.6% 2009
baySeq [40] 567 2.6% 2010
SAMseq [41] 279 1.3% 2013
sleuth [42] 45 0.2% 2017
NOIseq [43] 39 0.2% 2012

One of the best ways to provide a summary of the DGE results
is to generate figures [47, 48], giving a global representation of
the expression changes across multiple conditions. DGE tools
create output files sharing some information, such as mean gene
expression across replicates for each sample, log2 fold-change
(lfc) and adjusted P-value. However, these output files have many
differences in content and structure, which makes generat-
ing comprehensive visualizations a time-intensive and poten-
tially challenging task. In this paper, we review common and
applicable visualization techniques for DGE results, including
descriptions of what information can be interpreted from each
figure. The reviewed visualizations are broken down into two
tiers based on the information used to generate and the inter-
pretations that can be made using the figure. Tier 1 functions
involve more basic visualizations of read count distributions,
DEG counts and raw, normalized or transformed read count
comparisons. Tier 2 functions require more information and are
generated using mean expression values, log fold-changes and
adjusted P-values.

Additionally, we implement the most useful visualizations
into a single R/Bioconductor package, Visualization of Differen-
tial Gene Expression Results using R (ViDGER), to assist users
in generating publication-quality visualizations from Cuffdiff ,
edgeR and DESeq2 capable of providing valuable insight into their
generated DGE results (Figure 1). These three selected DGE tools
have been shown to be among the highest performing tools
for DGE analysis of RNA-seq data [44–46] and contribute to the
highest number of citations for DGE tools, representing roughly
80% of all cited DGE tools. The ViDGER package provides six base
functionalities for generating information-rich figures derived
from the two tiers of reviewed visualization methods. ViDGER
also integrates matrix functionalities to provide simultaneous
visualization of all pairwise comparisons for three of the base
functionalities. In addition to the example data sets provided
with the package, ViDGER was extensively tested on five addi-
tional data sets from human, Malus domestica, and three Vitis
riparia samples (Example S1).

Visualization methods

Six methods for DGE results visualization will be introduced,
and the implementation of each in existing tools is shown in
Table 2. While these six functionalities are useful and relatively
common, not all are implemented in any of the commonly
referenced DGE tools. Most tools have some methods of visu-
alizing the results of DGE analysis. However, none of the tools
provides a comprehensive view of using all nine functionalities.
Cummerbund [49], a companion tool for Cuffdiff, comes closest
to comprehensive visualization, with five of the six reviewed
functions. However, this tool is only compatible with Cuffdiff,
leaving the other DGE tools with limited capacity for visualizing
results. More commonly, a single function is included in the
package as a basic method for visualizing the DGE results, as
opposed to providing comprehensive visualization of multiple
aspects of the DGE results.

Figure 1. Treatment distributions visualization generated by the ViDGER package using a DESeq2 data set.
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Table 2. Nine functions for DGE results analysis and their implementation in existed tools

Function edgeR cummeRbund DESeq2 limma DEGseq baySeq SAMseq sleuth NOIseq

Treatment distributions No Yes No Yes No No No Yes Yes
FPKM/CPM scatter plot No Yes No No No No No Yes No
DEG counts No Yes No No No No No No No
MA plot Yes Yes Yes Yes No Yes No Yes Yes
Volcano plot No Yes No Yes No No No Yes No
Four-way plot No No No No No No No No No

Tier I Functions

Tier I consists of more basic functionalities used to visualize
raw or normalized expression levels and overall counts of DEGs.
These functions do not utilize specific measurements of statis-
tical significance (P-value, adjusted P-value) or magnitude of the
difference (fold-change). Instead, they display expression trends
and counts for DEGs. Within this tier, we include methods for
(i) visualization of treatment distributions, (ii) comparison of
FPKM or CPM and (iii) number of DEGs.

(i) Visualization of treatment distributions
Investigation of the distribution of read counts for each sample
can be useful in detecting any abnormalities present in any
sample or samples. Ideally, the overall distributions would be
similar for all samples displayed. If any sample is drastically
different from the others, the user would want to investigate
this occurrence further and attempt to rule out any possible
biases or erroneous methods that resulted in this difference.
To visualize treatment or sample distributions, a few meth-
ods can be used. Histograms can provide an appealing way
for this purpose, although simultaneously displaying multiple
samples or treatment groups can be problematic. The most
common implementation of visualizing treatment distributions
is through box plots (Figure 1) or their specialized counterparts,
such as violin plots or dot plots. While box plots do not directly
show an underlying distribution, they can provide the user with
information related to the distribution of the quartiles, which
can still be useful for this purpose. More useful for this purpose
is the modified box plots that show distributions. Violin plots,
which are visually and practically similar to box plots, can pro-
vide more detailed information about treatment distributions.
These figures can use raw reads counts, but more commonly
employ some normalization method that controls the range of
data points for a more useful and visually appealing graphics.
One such normalization method is base-10 logarithm, which is
the normalization method used in Figure 1.

(ii) Comparison of expression levels
Another relatively basic visualization method that belongs to
Tier 1 is the comparison of expression levels between two sam-
ples or two treatment groups. This comparison is generally
visualized through the use of scatter plots, where each data
point represents a single gene, and its placement indicates its
mean respective expression level in two treatments. Scatter
plots implemented in this way can be used to compare two
treatment groups on a larger scale. Since the axes represent
expression levels for their respective category, data points falling
along the diagonal would indicate similar expression levels from
both groups. Data points above or below the diagonal would
mean higher or lower expression levels for the y-axis factor level
relative to the x-axis factor level, respectively. When viewing
this scatter plot overall, a closer clustering of all data points

along the diagonal would indicate two samples or treatment that
have highly similar expression patterns across all genes, while
more spread of data points from the diagonal would indicate
less similar expression levels. To assist in this interpretation,
it is common for scatter plots representing expression levels
to include a diagonal line for reference. As with the visualiza-
tion of distributions in section (i), scatter plot comparisons of
expression levels frequently use normalized expression values,
as opposed to raw counts. This again assists in controlling
the range of expression levels to provide a more useful figure.
Normalized expression values are often in the form of FPKM
(reads per kilobase of transcript per million mapped reads) or
CPM (counts per million), and can sometimes even be displayed
using a base-10 logarithm scatter plot (Figure 2).

(iii) Number of DEGs
Another useful way to display more general results from DGE
analyses is to show the number of DEGs between two treatment
groups. Two of the most common are histograms and heatmaps.
Histograms can be used to indicate the number of pairwise DEGs
for all treatment comparisons simultaneously. This method is
highly useful as it directly displays which comparisons are more
dissimilar regarding DEGs. Additionally, histograms of this sort
can be modified to show the number of upregulated and down-
regulated DEGs in each comparison. Heatmaps based on the
number of DEGs, by comparison, can also be used to display
the same information (Figure 3) summarily. Using a spectrum of
colors based on the magnitude of the DEG counts, DEG heatmaps
can provide a straightforward method that is easily readable
and interpretable. For DEG heatmaps, each cell represents the
number of DEGs for the respective intersecting row and col-
umn. The placement along the chosen color spectrum visually
indicates the magnitude, as with Figure 3 where a darker blue
indicates a higher number of DEGs and thus more differentially
expressed treatment groups. DEG heatmaps do have one distinct
downfall related to redundancy. For three factor levels, this figure
works well to display the data; however, increasing the number
of factor levels results in redundant cells, which are usually
left blank as not to mislead users. This method then becomes
counterproductive, as it required more effort to interpret the
information efficiently. As the number of factor levels grows
more substantial, the usefulness of this type of visualization
decreases, so it is recommended only for few factor levels.

Tier II Functions

Tier II functions provide more information at the specific gene
comparison level. Functions in this tier consider information
related to statistical significance, mean expression levels and
magnitude of comparison. Consideration of these metrics also
allows this tier of functions to provide thresholds based on
widely-accepted cutoffs, such as adjusted P-values below 0.05
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Figure 2. Scatter plot of normalized read counts generated by the ViDGER package using a DESeq2 data set.

Figure 3. Heatmap of DEG counts by comparison generated by the ViDGER package using a DESeq2 data set with an adjusted P-value cutoff of 0.05 for classification as

differentially expressed.

and log fold-changes above 1. The functions in this tier utilized
two of these metrics to visualize the results of DGE analysis.
Within this tier, we include methods for (iv) fold-change versus
normalized mean counts, (v) P-value versus fold-change and (vi)
relative comparison of fold-change.

(iv) Fold-change versus normalized mean counts
MA plots are commonly used to represent log fold-change versus
mean expression between two treatments (Figure 4). This is visu-
ally displayed as a scatter plot with base-2 log fold-change along
the y-axis and normalized mean expression along the x-axis.
Data points with extreme values along the y-axis represent the

genes that have highly differential expression levels (although,
not necessarily differentially expressed). Typically, lower mean
expression values will have more variability in log fold-change
than the higher expression value. This results in a fanning effect
of the data points as the graph moves from right to left. Since
there are standard thresholds for log fold-changes, MA plots will
many times have indications of these cutoffs. However, since this
figure does not display any measure of statistical significance, it
does not directly indicate which data points are statistically dif-
ferentially expressed. To accommodate this, some MA plots will
color data points to show which have below-threshold adjusted
P-values.
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Figure 4. MA plot displaying the log fold-change compared with mean expression generated by the ViDGER package using a DESeq2 data set, with default log fold-change

thresholds of −1 and 1.

With each data point again representing a single gene, some
valuable information can be extracted from a well-constructed
MA plot. A general base-2 log fold-change threshold of 1 indi-
cates which genes either double or halve in the respective com-
parison. An MA plot with a high number of data points falling
above the one threshold on the y-axis would indicate a more sig-
nificant number of genes being upregulated, while more below
−1 would indicate high levels of downregulation in genes. Com-
monly, MA plots with have a fairly even dispersion relative to
the y-axis, which tightens with an increase along the x-axis.
Sometimes, biological significance may indicate an expected
spread higher or lower on the y-axis than the usual, as may be
the case when studying dormant and non-dormant plants. In
the scenario where all or most data points fall close to 0 along
the y-axis, the two treatment groups would be highly similar in
expression patterns.

(v) P-value versus fold-change
Another common comparison of interest between two treat-
ment conditions is the adjusted P-value versus log fold-change.
This figure is referred to as a volcano plot, as it resembles an
exploding volcano, with clusters of data points close to the origin
and a fanning effect moving away from this central location
(Figure 5). Volcano plots display the statistical significance of the
difference relative to the magnitude of difference for every single
gene in the comparison, usually through the negative base-10
log and base-2 log fold-change, respectively. Since the P-values
have a negative transformation, the higher along the y-axis a
data point falls, the smaller the P-value. It is generally used for
volcano plots to include some threshold indicators for adjusted
P-values to indicate which genes would be considered statisti-
cally differentially expressed based on the adjusted P-value of
their difference between treatments. The log fold-change along
the x-axis displays more considerable differences in the extreme
values, with data points closer to 0 representing genes that have
similar or identical mean expression levels. For volcano plots,

a fair amount of dispersion is expected as the name suggests.
A wider dispersion indicates two treatment groups that have a
higher level of difference regarding gene expression. It is quite
rare for a volcano plot to have most, or all data points clustered
close to the origin.

(vi) Relative comparison of fold-change
While less common than the other described methods, func-
tionalities that provide a relative comparison of log fold-changes
also have broad applicability. A four-way plot is one particular
method for visualization of relative fold-change comparisons.
In this type of figure, two treatments are compared through
their respective log fold-change with a control group (Figure 6).
Most commonly, this visualization can be used to compare two
distinct treatment groups relative to a control treatment. This
comparison is most useful when multiple comparisons are being
made against a specific control or corresponding sample. On this
type of visualization, the x-axis represents the log fold-change of
treatment A with the control, while the y-axis represents the log
fold-change of treatment B with the control. Based on log fold-
change thresholds, this figure can be broken down into nine dis-
tinct regions. The middle region represents genes that have low
fold-changes in both treatments relative to the control group.
The upper-right and lower-left regions represent the genes that
are respectively highly and lowly expressed in both conditions.
The upper-left and lower-right regions indicate genes which
are highly expressed in one comparison and lowly expressed
in the other. The central region on the right and left represent
genes with similar expression levels between treatment A and
the control group, while treatment B expression levels differ
from the control. The central regions on upper and lower areas
operate inversely of this. From these regions, a comprehensive
view of three-factor levels can be observed. For figures with
most or all data points in the central region, both treatments
would have similar expressions with the control group. Data
points falling along the increasing diagonal from left to right
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Figure 5. Volcano plot generated by the ViDGER package using a DESeq2 data set, with default log fold-change thresholds of −1 and 1 and an adjusted P-value threshold

of 0.05.

Figure 6. Four-way plot generated by the ViDGER package using a DESeq2 data set, with default log fold-change thresholds of −1 and 1.

would have similarly differing expression levels compared to the
control group. Most points falling along the opposite diagonal
would represent genes with an inverse relationship relative to
the control group.

Integrated visualization package

To assist users in generating the reviewed visualizations for their
DGE results, we incorporated the figures into a single R package,
ViDGER (Visualization of Differential Gene Expression Results
using R). This tool is compatible with DGE results files from the
three most widely used DGE tools, Cuffdiff, edgeR and DESeq2.
ViDGER functions require limited information to generate

high-quality visualizations, with the purpose geared towards
ease-of-use to quickly generate highly informative visual aids for
presentations, posters, and publications (Figure 7). Most ViDGER
functions only require user specification of data and data type
(i.e. Cuffdiff, DESeq2 or edgeR) and potentially an indication of
factor levels of interest.

ViDGER provides visualizations for each of the reviewed
visualization methods, including box plots, violin plots, notched
box plots and optional dot plot overlays for (i) visualization
of treatment distributions, scatter plots for (ii) comparison
of expression levels, DEG heatmaps for (iii) visualization of
number of DEGs, MA plots for (iv) fold-change versus mean
counts, Volcano plots for (v) fold-change versus P-value and
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Figure 7. (A) Boxplot generation of RNA-seq data using vsBoxplot; (B) scatter plot generation using vsScatterPlot; (C) differential gene expression matrix using vsDEGMatrix;

(D) MA plot generation using vsMAPlot; (E) volcano plot generation using vsVolcano; (F) four-way plot generation using vsFourWay. Arrow and text color refer to

visualizations generated using Cuffdiff data (black), DESeq2 data (blue) and edgeR data (red).

Figure 8. Matrix of all pairwise scatter plots showing normalized expression values generated by the ViDGER package using a DESeq2 data set. In addition to the

pairwise scatter plots, density plots are provided along the diagonal and pairwise correlation values are provided in the opposite half of the matrix.

four-way plots for (vi) relative comparison of fold change.
For users with specific genes of interest, the scatter plot,
MA plot, Volcano plot and four-way plot functionalities allow
for a set of user-provided genes to be highlighted in the
figure. In addition to the basic functionalities, ViDGER also
integrates Scatter plot, MA plot and Volcano plot function-
alities into a matrix format displaying all possible pairwise
figures in the provided data (vii–ix). The ViDGER package is
developed for the R environment (> = 3.5.0) and is freely avail-

able through Bioconductor at https://www.bioconductor.org/
packages/3.7/bioc/html/vidger.html. More details about the
specific ViDGER functions and their application can be found
in the Supplementary Materials.

(vii) Comparison of FPKM or CPM Treatment combinations
Often, researchers want to visualize multiple pairwise com-
binations of expression levels at once. While the scatter plot
functionality provides an efficient way to compare global
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Figure 9. Matrix of all pairwise MA plots showing log fold-change compared with mean expression value generated by the ViDGER package using a DESeq2 data set,

with default log fold-change thresholds of −1 and 1.

expression patterns between two specified treatments, its
limitation is two treatment comparisons. An efficient way to
overcome this hurdle is to generate a matrix of all pairwise
comparisons using the scatter plot functionality (Figure 8). This
approach integrates the benefits observed through pairwise
visualization of expression levels from the scatter plot with
the matrix capability of displaying all combinations at once.
Each column represents one treatment, each being replicated
in a row as well. Each cell represents the pairwise comparison
between its row treatment and its column treatment. Since the
pairwise matrix of scatter plots has some redundancy from
the opposite diagonal display and triviality along the diagonal,
these cells are typically replaced with additional information.
Commonly, the diagonal cells, which would represent the
pairwise comparison of the same treatment, are replaced with
expression level density plots. Opposite diagonal cells, which
would otherwise represent the same information, are commonly
used to display correlation values. These values provide an
empirical representation of the overall similarity between the
two treatments. A value of 1 indicates identical expression
trends, although not necessarily identical expression levels, and
a value of −1 indicates perfectly opposite expression trends. Due
to the nature of genetic data, the high level of similarity among
genetic expressions for the same species will likely result in
high correlations. Interpretations of these correlation values
are more effectively used to compare the relative similarity
between pairwise comparisons. This approach allows for a view
of each relative expression pattern and correlation all-in-one
visualization.

(viii) Fold-change versus normalized mean counts treatment
comparisons
As with the normalized expression scatter plots in (ii), MA
plots are only capable of comparing two treatment conditions

at once. However, all pairwise comparisons for this figure can
be combined into a matrix format to provide all possible com-
binations simultaneously (Figure 9). For this figure, each cell
represents a particular comparison, which is either denoted
on a cell-by-cell basis or through the row-column intersection.
This visualization enables users to view all pairwise fold-change
versus mean expression comparisons at once. Additionally, this
method allows for a direct comparison of the pairwise treat-
ment comparisons. Doing so provides an approach to determine
which treatment comparisons are more or less similar in both
log-fold change and mean expression level. This process, as
with the other matrix options, allows users to visualize all their
treatment-based comparisons in one figure.

(ix) P-value versus fold-change treatment comparison
Volcano plots encounter the same issues as MA plots in terms
of displaying information from only two treatments at once.
A similar approach is used to overcome this issue as is used
for MA plots: integration of all pairwise comparisons into
a single matrix. This matrix functionality enables users to
view all pairwise volcano plots simultaneously, giving them
a direct look at adjusted P-value versus log fold-change for
all possible pairwise comparisons (Figure 10). As with the MA
plots, each cell of the matrix represents a distinct comparison.
Using this functionality, researchers can analyze the pairwise
comparisons of P-value and fold-change to identify more
similar or more different sets of comparisons. Although this
option may have limited experience use, it would be useful
in situations where users wish to show mass similarity
across all comparisons, highlight the individual or limited
deviations, or display situations where the comparisons vary
widely.
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Figure 10. Matrix of all pairwise Volcano plots showing log fold-change versus adjusted P-value generated by the ViDGER package using a DESeq2 data set, with default

log fold-change thresholds of −1 and 1 and an adjusted P-value threshold of 0.05.

Conclusions
DEGs are frequently used to determine genotypical differences
between two or more conditions of cells, in support of spe-
cific hypothesis-driven studies. Interpretation of this informa-
tion can benefit significantly from the graphical representa-
tion of results files. Tier 1 functions, including those used to
visualize reads counts distributions, pairwise expression levels
and DEG counts, provide a relatively basic level of information,
while Tier 2 functions take additional metrics—such as mean
expression levels, fold-changes and P-values—to provide more
detailed and informative visualizations. Box plots, violin plots,
dot plots and read counts histograms can provide insight into
the distribution of reads counts for each sample or treatment
group. Scatter plots allow users to visualize the overall simi-
larity of expression levels by displaying each gene’s expression
level in two select treatments or samples. DEG histograms and
heatmaps provide a direct representation of the number of DEGs
in each comparison. MA and volcano plots are useful in the
relative display of mean expression levels, log fold-changes and
adjusted P-values. Four-way plots, while not applicable for every
user, can provide an even higher level of detail by incorporat-
ing a third treatment group or sample as a relative or control
group.

Although a lot of information and presentation method has
been provided in different tools, the integration of these func-
tions in a user-friendly way is still needed. After reviewing six
mainstream methods for DEGs result analysis, we have created
an R package to assist in the process of generating publication
quality figures of DGE results files from Cuffdiff , DESeq2 and
edgeR. Additionally, we implemented three of the functionalities
in matrix form to provide a comprehensive view of all pairwise
comparisons. We believe that this package will significantly
assist biologists and bioinformaticians in their interpretations of
DGE results. Utilizing this package will provide a straightforward

method for comprehensively viewing DEGs between samples of
interest and allows researchers to generate usable figures for the
furthered dissemination of their DGE studies.

Key Points
• DGE analysis is one of the most common applications

of RNA-seq data. It determines genotypical differences
between two or more conditions of cells, in support of
specific hypothesis-driven studies.

• The integration and the visualized representation of
DGE result analysis functions can facilitate the down-
stream studies, especially for researchers who have
limited computational backgrounds.

• The six reviewed functionalities provide a comprehen-
sive view of DGE results through visualizations.

• The ViDGER R package provides a straightforward
method for visualizing DGE results files that from the
three most commonly used DGE tools: DESeq2, edgeR
and Cuffdiff. Nine functions are provided, including six
distinct visualizations with three matrix options.

• The generated visualizations provide comprehensive
views of the DGE results files in highly informa-
tive, publication-quality figures, all of which can be
extracted in multiple formats.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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